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Abstract

Studying human blood flow is crucial in biomedical research to address blood-related disorders.
However, experimental studies are costly and time-consuming. Hence, mathematical models
have been developed to represent these physical phenomena. Yet, existing models often over-
look the slip boundary effect. This study explores an analytical solution for the pulsatile flow
of a fractional Casson fluid in a slip cylinder, considering free convection, magnetic fields, and
porosity. Employing the Caputo–Fabrizio fractional derivative method, the problem is mod-
elled. Analytical solutions are obtained using Laplace and finite Hankel transforms. Graphical
representations illustrate velocity and temperature profiles, emphasizing parameters such as
magnetic, Casson, Darcy, fractional, slip, Grashof, and Prandtl numbers. Numerical results for
skin friction and Nusselt number are tabulated. The results suggest that enhanced slip veloc-
ity amplifies fluid flow, particularly near the cylinder’s surface, generating lubrication to allevi-
ate blood-vessel friction and improve blood flow by enabling smoother movement along vessel
walls. The fractional-order derivative fluid model is more practical and realistic compared to
the classical fluid model due to its memory effect which sudden rise in blood velocity can po-
tentially damage the blood vessel and lead to atherosclerosis. The obtained analytical result can
be used to validate the accuracy of the mathematical model obtained by numerical methods.
Keywords: blood Casson fluid; Caputo–Fabrizio fractional derivative; heat transfer; Hankel

transform; slip velocity.
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1 Introduction

The latest developments in industrial sectors, such as generators, wastewater treatment, and
drug delivery in human blood, emphasize the growing interest among researchers [14]. Chamkha
et al. [15] stated that among the three heat transfermechanisms, free, force, andmixed convection,
free convection typically garners significant focus, as study by Jha et al. [30]. Dehbani et al. [19]
defined free convection as one of the forms of heat transportation that involves the interaction
between buoyancy and gravitational force, which arises because of the density change caused
by a temperature gradient. It is significant for energy conservation since it requires no energy
absorbers, as highlighted by Husain et al. [25]. Motivated by it, Khan et al. [32] considered the
free convection effect on the viscous fluid behaviour in an oscillating cylinder. They obtained the
result that this phenomenon enhanced fluid flow and obtained the analytical result by combining
the Laplace and Hankel transform methods. Then, Javaid et al. [29] extended a similar problem
to Khan et al. [32] to study second-grade fluid behaviour, and they obtained the same analytical
result with the same methods.

One of the heat transfer sources is Magnetohydrodynamics (MHD), which arises from the in-
duced current generatedwhen an electrically conducting fluid flows through an appliedmagnetic
field. It can be found in the metallurgical industry and treats cancer in biomedical applications
[22]. Abdelhameed [3] explored the MHD and free convection impacts on the water flow, which
is Newtonian fluid through an accelerated plate. He employed the Laplace transform approach
to obtain the exact result. He highlighted that MHD causes fluid velocity to decline. Anuraq et al.
[9] extended a similar problem reported byAbdelhameed [3], which is the flowbetween two fixed
cylinders. Comparable results were achieved by applying the Laplace and finite Hankel transform
to the analytical solution.

Moreover, a porous medium is another technique to enhance convective heat transfer proper-
ties, as stated by Xu et al. [56]. Mahdi et al. [36] and Khaled et al. [31] defined a porous medium
as any material that encompasses a solid matrix and interconnected voids. Examples of porous
media include rocks, cells, the cholesterol effect, fatty plaque, and others, as mentioned by Dash
et al. [18]. In the investigation of pulsatile blood flow within a porous medium, Elshehawey [20]
were early researchers who derived an analytical solution for Newtonian fluid. They employed
the Laplace and finite Hankel transforms to address this particular challenge. Then, Rathod et al.
[49] discovered a similar issue and method as Elsehawey et al. [20] for non-Newtonian fluid by
adding the MHD effect. They found that fluid velocity rises in direct proportion to the porous
medium’s permeability. Anurag et al. [10] investigated analytically the porosity impact on the
viscous fluid, which is moving freely in the fixed cylinder by convection, and obtained similar
results as Rathod et al. [49].

Besides, most studies have assumednon-slip conditions for the fluid flowproblem. In fluidme-
chanics studies, the prevailing hypothesis suggests that fluid adhering to the boundary is proven
effective for Newtonian fluid flow only. Rao et al. [47] defined slip as the finite velocity between
fluid flow particles and a solid boundary. It is observed in practical scenarios such as blood flow
in elastic arteries and oil suspension flow in pipelines, as emphasized by Nubar et al. [44]. En-
couraged by it, Abd El-Aziz et al. [1] analyzed the slip boundary’s impact on the plate for the
flow characteristics of Newtonian and non-Newtonian fluids (Casson fluid). They obtained the
semi-analytical result by using the perturbation technique. The existence of the slip can reduce the
friction force, which enhances the fluid velocity. Padma et al. [46] studied how slip and non-slip
conditions impact the flow characteristics of Jefrey fluid model, specifically in blood flow within
a stenosed artery, considering the MHD effect. Then, Padma et al. [45] extended this study by
incorporating additional effects of body acceleration and an external electric field. Both studies

756



W. F. W. Azmi et al. Malaysian J. Math. Sci. 18(4): 755–774(2024) 755 - 774

addressed these issues analytically by employing Laplace and finite Hankel transforms for their
solution. Studies have indicated that the existence of a slip boundary leads to an increase in the ve-
locity of fluid flow. Then, Nandal et al. [42] created a mathematical model to represent pulsating
blood flow in the stenotic cylinder with a slip condition present. They obtained similar analytical
results by using the same methods as Padma et al. [46]. More discussions on the impact of slip
boundaries can be found in the references. For instance, Yanala et al. [58] examined the numeri-
cal effects of slip conditions on a plate, considering the impact of chemical reactions and thermal
radiation. Subba Rao et al. [48] studied the numerical effects of slip on Powell-Eyring fluid over
a radially stretching surface. Choudhari et al. [17] investigated the impact of slip conditions on
Herschel-Bulkley fluid flow in a tube, and this study was subsequently extended by Baliga et al.
[11] to include thermal slip in an inclined tube.

Fluid is one of the heat carriers involved in the cooling and heating processes. The Casson
fluid has been extensively investigated as a non-Newtonian fluid in academic research. It exhibits
elastic solid behaviour when the yield stress exceeds the applied shear stress, while fluid starts to
flow if the shear stress condition is reversed, as defined by Sochi [55] and Alderman [4]. Accord-
ing to Chhabra [16], due to its unique characteristics, this fluid exhibits potential suitability as
an approximation for biological fluids, such as human blood. As indicated by Sankar and Ismail
[52], the Casson fluid model is suitable for analyzing blood flow behaviour in small arteries rang-
ing from 130 to 1300 µm in diameter. Hayat et al. [23] revealed the flow characteristics of Casson
fluids occurring at the stagnation point of the stretching cylinder. They applied the Homotopy
analysis approach and obtained that increasing the Casson parameter caused a more significant
fluid velocity as close to the cylinder’s wall and a lesser one as it was farther away. Later, Jalil et al.
[26] delved into the behaviour of a Casson fluid experiencing free convection within a stretching
cylinder. The Keller box approach was utilized to find the numerical answer. Conversely, Kumar
et al. [35] observed an augmentation in fluid velocity due to the Casson parameter in the moving
cylinder. They obtained numerical results by using the Crank-Nicolson method. Due to the dif-
ferences in the time interval, Kumar et al. [35] evaluated the result for a small interval, while Jalil
et al. [26] analyzed the result for a more significant time interval. Another explanation of the.

Recently, researchers have been attracted to employing fractional derivatives in the governing
equation since they are more realistic and accurate than the classical model [54]. Moreover, it is
extensively used in engineering and industrial applications, such as signal processing, as stated
by Ray et al. [50] and in biological practices like cancer treatment and drug delivery, as noted by
Faraloya et al. [21]. Ali et al. [8] adopted the Caputo fractional derivative as a mathematical tool
for characterizing the momentum equation in the context of Casson fluid flowwithin a stationary
cylinder influenced by magnetohydrodynamics (MHD). To address the problem, the Hankel and
Laplace transforms were used. The results indicate that fractional parameters can increase or de-
crease fluid velocity depending on the temporal factors. Later, Sene [53] applied the previously
mentioned fractional operator to investigate natural convection flow over amobile plate within the
framework of the Casson fluid model. They used the Laplace transform to solve analytically and
obtained the same result as Ali et al. [8]. Moitoi et al. [41] examined blood behaviour as Newto-
nian fluid flow in a permeable cylinder with the effect of body acceleration. Bayissa Yadeta et al.
[57] extended this study to consider blood flow as a Casson fluid in the cylinder, incorporating
the effects of MHD. They employed the Caputo fractional derivative and obtained semi-analytical
solutions.

Subsequently, the Caputo-Fabrizio fractional derivative can effectively overcome the limita-
tions of representing physical phenomena [12]. Examining a Casson fluid, Ali et al. [5] scruti-
nized the characteristics of magnetic particles confinedwithin a stationary cylinder. The fractional
derivative method of Caputo–Fabrizio was applied. They devised an analytical answer using the
same approach as Ali et al. [8]. They found that a fractional parameter controls fluid velocity.

757



W. F. W. Azmi et al. Malaysian J. Math. Sci. 18(4): 755–774(2024) 755 - 774

Ali et al. [6] extended the same problem and obtained the same results as Ali et al. [5] with a
moving cylinder. Later, Ali et al. [7] studied a similar problem as Ali et al. [5], which involves
flow in an oscillating cylinder without considering magnetic particles. The study presents evi-
dence supporting the fractional fluid model’s enhanced fidelity compared to the classical fluid
model. Furthermore, Maiti et al. [37] examined the Casson fluid flow in a stationary cylinder,
considering the effects of body acceleration, MHD, thermal radiation, and porous medium. Sub-
sequently, Maiti et al. [38] extended the problem by incorporating the additional effect of chemical
reactions. Later, Maiti et al. [39] extended the study to include the involvement of magnetic parti-
cles. They used the Caputo-Fabrizio fractional derivative approach. When controlling the thermal
behaviour of fluids, the fractional parameter is essential. In addition, the effect of the fractional
parameter on MHD Casson fluid flow with magnetic particles in an inclined cylinder with ra-
dially non-symmetric geometrical stenosis was investigated by Jamil et al. [27] while the effect
with multi-stenosis was explored by Jamil et al. [28]. They mentioned that fractional derivatives
have a memory effect and are controllers of fluid velocity. The problem was analytically solved
by combining Laplace and finite Hankel transforms. All researchers assumed a no-slip boundary
condition in their fractional derivative problems.

Past literature has addressed slip velocity’s impact on non-Newtonian fluids (Jeffrey fluid,
Herschel-Bulkley fluid) to simulate arterial blood flow, yielding semi-analytical and analytical
solutions. However, no analytical solution has been provided for Casson fluid flow in the cylinder
with slip velocity effectswhich focused on the humanbloodproperties in the diameter range of 130
to 1300 µm. Moreover, most researchers used the Caputo-Fabrizio fractional derivative method
without considering slip velocity effects, resulting in analytical solutions with special functions
that cannot be directly plotted. This study’s novelty lies in obtaining an analytical solution in
closed formwithout special functions, serving as a benchmark for numerical solutions and analyz-
ing the impact of slip velocity on the fractional Casson fluid model. This study also examined the
effects of MHD, pulsatile pressure gradient, porous medium (cholesterol effect), and free convec-
tion flow. Incorporating the slip boundary condition of the cylinder enables accurate modelling,
especially in biomedical contexts where Casson fluid represents blood flow in constricted vessels.
The study achieves its objectives by transforming governing equations into a dimensionless form
and employing the Caputo-Fabrizio fractional derivative model. Analytical solutions for velocity
and temperature profiles are obtained through Laplace and finite Hankel transforms, visualized
using the Maple program.

2 Problem Formulation

The depiction of the porous medium in the context of MHD Casson fluid flow within a hori-
zontal cylinder is visually explained in Figure 1, where the radius is denoted as r0. The pulsatile
pressure gradient is responsible for initiating this fluid motion. The free convection and slip ve-
locity effects are considered in this approach. Given that the cylinder’s fluid flow is considered,
the fluid flow problem will be investigated in the cylindrical polar coordinate. In the Casson fluid
flow context, the z-axis delineates fluid motion direction, whereas the r-axis remains orthogonal
to the cylinder’s horizontal axis. This investigation scrutinizes the utilization of B0, representing
magnetic field intensity, concerning the radial coordinate. Assuming that the induced magnetic
field produced by fluid flow is negligible due to a very small Reynolds number, as highlighted
by Kumar et al. [34] and the Hall effect in magnetohydrodynamics is considered insignificant,
as stated by Krishna et al. [33]. Besides that, the porous medium inertia effects are disregarded
due to the low flow velocities, and the local thermal equilibrium condition is applied to simplify
the mathematical formulation [13]. The function describing fluid velocity and temperature is as-
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sumed to depend solely on the variables r and t. At t∗=0, both the Casson fluid and the cylinder
are in a state of idleness, characterized by the ambient temperature, T∞. Upon reaching t∗ > 0,
the fluid initiates its motion, featuring a slip velocity at the cylinder wall’s surface. Concurrently,
the cylinder’s temperature increases from the ambient temperature marked as T∞ to match the
wall’s temperature, labelled as Tw, and remains constant, as shown in Figure 1.

Figure 1: The graphical depiction of the fluid flow phenomenon.

The governing equations for this study are based on the conservation laws of mass, linear
momentum and energy in the cylinder, which had been formulated by considering factors such
as free convection flow, magnetic field, porous medium, and the influence of a pulsating pressure
gradient. These equations are derivedwithin the framework of the earlier mentioned assumptions
and by applying Boussinesq’s approximation [7, 37], which yield momentum Casson and energy
equations as;

ρ
∂v∗

∂t∗
= −∂p∗

∂z∗
+ µ

(
1 +

1

ζ

)(
∂2v∗

∂r∗2
+

1

r∗
∂v∗

∂r∗

)
− µ

kp
v∗ − σB2

0v
∗ + gρβt(T − T∞), (1)

ρcp
∂T ∗

∂t∗
= k

(
∂2T ∗

∂r∗2
+

1

r∗
∂T ∗

∂r∗

)
, (2)

where the density of fluid (ρ), the z-axis velocity component (v∗), a pulsatile pressure gradient
(∂p∗/∂z∗), dynamic viscosity (µ), the non-Newtonian Casson parameter (ζ = µB

√
2πc/τy), per-

meability constant (kp), electrical conductivity (σ), applied magnetic field strength (B0), gravita-
tional acceleration (g), coefficient of thermal expansion (βT ), fluid temperature (T ), specific heat
capacity at constant temperature (cp), and thermal conductivity (k). Subsequently, the initial and
boundary conditions relevant to this problem are presented [32, 46];

v∗(r∗, 0) = 0, T (r∗, 0) = T∞, ; r ∈ [0, r0],

v∗(r0, t
∗) = v∗s , T (r0, t

∗) = Tw, ; t∗ > 0,
(3)

where vs is slip velocity. Showcasing the relevant dimensionless variables [32, 45];

t =
t∗ν

r20
, r =

r∗

r0
, v =

v∗

v0
, vs =

v∗s
v0

, z =
z∗

z0
, p =

p∗r0
µv0

, θ =
T − T∞

Tw − T∞
. (4)

In conjunction with the initial and boundary conditions (3) and the governing equations for mo-
mentum (1) and energy (2), transform them into a dimensionless form using dimensionless vari-
ables (4) and obtain the following;

∂v

∂t
= −∂p

∂z
+ ζ1

(
∂2v

∂r2
+

1

r

∂v

∂r

)
− 1

Da
v −Mv +Grθ, (5)
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∂θ

∂t
=

1

Pr

(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
, (6)

with the conditions
v(r, 0) = 0, θ(r, 0) = 0, ; r ∈ [0, 1],

v(1, t) = vs, θ(1, t) = 1, ; t > 0,
(7)

where the obtained dimensionless parameters are as follows: Darcy number Da =
kp
r20

, magnetic

parameter M =
σr20B

2
0

µ , Grashof number Gr =
gβT (Tw − T∞)r20

νu0
, and Prandtl number Pr =

µcp
k

,

Meanwhile, ζ1 =
1

ζ0
and ζ0 = 1+

1

ζ
are the constant parameters, and ζ = µB

√
2πc/τy is the Casson

parameter. The pulsatile pressure gradient replicates the cyclic pumping mechanism of the heart
[37], which is −∂p

∂z
= A0 + A1 cos(ωt) where A0 and A1 are the constants of pulsatile amplitude,

ω defined as the pulsatile frequency. The dimensionless momentum governing equation can be
written as,

∂v

∂t
= A0 +A1cos(ωt) + ζ1

(
∂2v

∂r2
+

1

r

∂v

∂r

)
− 1

Da
v −Mv +Grθ. (8)

By applying the Caputo-Fabrizio fractional derivative, the time derivative on the left-hand side of
(6) and (8) is transformed into its fractional form, which yields [37],

CFDα
t v(r, t) = A0 +A1cos(ωt) + ζ1

(
∂2v

∂r2
+

1

r

∂v

∂r

)
− 1

Da
v −Mv +Grθ, (9)

CFDα
t θ(r, t) =

1

Pr

(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
, (10)

where CFDα
t f(r, t) =

1

1− α

∫ τ

0

exp

(
−α(τ − t)

1− α

)
f

′
(τ) dt, 0 < α < 1 is the definition of the non-

singular kernel Caputo-Fabrizio fractional derivative and α is a fractional derivative parameter
[37].

3 Problem Solution

The study examines heat transfer and the movement of MHD Casson fluid within a porous
medium inside a cylinder with slip conditions. This investigation’s analysis utilizes Laplace trans-
form and finite Hankel transform methodologies. A fluctuating pressure gradient drives this
setup. The Laplace transform is a frequently used mathematical method for addressing issues
associated with initial boundary values and transient scenarios. While dealing with cylindrical
domains, the finite Hankel transform offers unique advantages. The process of reducing a partial
differential equation results in the appearance of an ordinary differential equation. The analytical
outcome will be derived by employing the inverse of both methodologies.
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3.1 Calculation of temperature

Modifying (10) and their associated initial and boundary conditions (7) is achieved through
the application of the Laplace transform technique. This transformation leads to

a0q θ̄(r, q)

q + a1
=

1

Pr

(
∂2θ̄(r, q)

∂r2
+

1

r

∂θ̄(r, q)

∂r

)
, (11)

θ̄(1, q) =
1

q
, (12)

where the fractional constant parameters representing as a0 = 1/1−α and a1 = a0α , the Laplace
transform of the function θ(r, t) is indicated by θ̄(r, q), and q is the transformation variable. Next,
(11) undergoes the zero-order finite Hankel transform while incorporating condition (12). The
outcome is as follows,

θ̄H(rn, q) =
rnJ1(rn)

q

[
q + a1

(a0Pr + r2n)q + a1r2n

]
, (13)

where θ̄H(r, q) =
∫ 1

0
rθ̄(r, q)J0(rrn)dr is the finite Hankel transform of the function θ̄(r, q) and rn

with n = 0, 1, . . . are the positive roots of the equation J0(x) = 0, where J0 represents the Bessel
function of the first kind with zero-order, and J1 signifies the Bessel function of the first kind with
first-order. Subsequently, (13) is further simplified and derived as follows,

θ̄H(rn, q) =
J1(rn)

rn

[
1

q
− a0Pr

(q + a3[n])(a0Pr + r2n)

]
, (14)

where a3[n] = a1r
2
n/(a0Pr + r2n) is the constant parameter. Subsequently, (14) undergoes the

inverse Laplace transform, resulting in

θH(rn, t) =
J1(rn)

rn

[
1− a0 Pr exp(−a3[n]t)

a0 Pr + r2n

]
. (15)

Lastly, we attain an analytical expression for the temperature profiles, (15), by employing the
inverse finite Hankel transform, resulting in

θ(r, t) = 1− 2a0 Pr

∞∑
n=1

J0(rrn) exp(−a3[n]t)

rnJ1(rn)(a0Pr + r2n)
. (16)

3.2 Calculation of velocity

Utilizing the Laplace transform on (9) in combination with the relevant initial and boundary
conditions (7) produces the resulting expression

a0 qv̄(r, q)

q + a1
=

A0

q
+

A1 q

q2 + ω2
+ ζ1

(
∂2v̄(r, q)

∂r2
+

1

r

∂v̄(r, q)

∂r

)
− 1

Da
v̄(r, q)−Mv̄(r, q) +Grθ̄(r, q),

(17)

v̄(1, q) =
vs
q
, (18)

representing the Laplace transform of the function v(r, t), v̄(r, q) is identified. Next, Laplace’s
partial differential equation, (17), in conjunction with the boundary conditions, (18), transforms
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an ordinary differential equation (ODE) using the zero-order finite Hankel transform method,
resulting in

v̄H(rn, q) =
J1(rn)

rn

(
A0

q
+

A1 q

q2 + ω2
+ ζ1r

2
n

vs
q

+Grθ̄(rn, q)

)(
q + a1

(a0 +A3[n])q + a1 A3[n]

)
, (19)

where v̄H(r, q) =
∫ 1

0
rv̄(r, q)J0(rrn) dr is the finite Hankel transform of the function v̄(r, q), and

A3[n] = M +
1

Da
+ ζ1r

2
n is a constant parameter. In (19) is subjected to the inverse Laplace

transform in the following step, resulting in

vH(rn, t) = v1(t) + v2(t) + v3(t) + v4(t)− v5(t), (20)

with

v1(t) =
J1(rn)

rn

A0

A3[n]

(
1− a0

L[n]
exp(−J [n]t

)
,

v2(t) =
J1(rn)

rn

A1

L[n](ω2 + J [n]2)
((ω2 + a1J [n]) cos(ωt)− (ωJ [n]− a1ω) sin(ωt)

− J [n](a1 − J [n]) exp(−J [n]t)),

v3(t) =
J1(rn)

rn
vs

[
1− a0exp(−J [n]t

L[n]

(
1− a3

a3 + ζ1r2n

)
− a3

a3 + ζ1r2n

]
,

v4(t) =
J1(rn)

rn

Gr

A3[n]

[
1− a0

L[n]
exp(−J [n]t)

]
,

v5(t) =
J1(rn)

rn

Gr a0 Pr

(A3[n]Pr− r2n

[
Pr exp(−H[n]t)

a0Pr + r2n
− exp(−J [n]t)

L[n]

]
,

where a3 =
1

Da
+M , J [n] = a1A3[n]

a0 +A3[n]
, L[n] = a0+A3[n] andH[n] =

a1r
2
n

a0Pr + r2n
are constant pa-

rameters. The inverse finite Hankel transform is applied to analytically solve (20) for the velocity
profiles, resulting in the following expression,

v(r, t) = vs − 2a0vs

∞∑
n=1

J0(rrn)

rnJ1(rn)

exp(−J [n]t)

L[n]

(
1− a3

A3[n]

)
− 2vs

∞∑
n=1

J0(rrn)

rnJ1(rn)

a3
A3[n]

+ 2

∞∑
n=1

J0(rrn)

rnJ1(rn)

[
A0

A3[n]

(
1− a0exp(−J [n]t)

L[n]

)]

+ 2

∞∑
n=1

J0(rrn)

rnJ1(rn)

[
A1

L[n](J [n]2 + ω2)

(
ω2 + a1J [n]

)
cos(ωt)− (ωJ [n]− a1ω) sin(ωt)

]
− J [n](a1 − J [n]) exp(−J [n]t)

+ 2Gr

∞∑
n=1

J0(rrn)

rnJ1(rn)

[
1

A3[n]
+

a0 exp(−J [n]t)

L[n]

(
r2n

A3[n](A3[n]Pr− r2n)

)

− a0Pr
2 exp(−H[n]t)

(a0 Pr + r2n)(A3[n]Pr− r2n)

]
.

(21)
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3.3 Special case for classical fluid model (α = 1)

When the fractional parameter α = 1, the analytical solution for fluid temperature in the clas-
sical fluid model can be derived as,

θ(r, t) = 1− 2

∞∑
n=1

J0(rrn)

rnJ1(rn)
exp

(
−r2n
Pr

t

)
, (22)

and the analytical solution of fluid velocity in the classical fluid model is obtained as,

v(r, t) = vs + 2

∞∑
n=1

J0(rrn)

rnJ1(rn)

[
− v1(r, t) + v2(r, t) + v3(r, t)

]
, (23)

with

v1(r, t) = vs

(
exp(−A3[n]t) +

a3(1− exp(−A3[n]t))

a3 + ζ1r2n

)
,

v2(r, t) =
A0

A3[n]

(
1− exp(−A3[n]t) +

A1

A3[n]2 + ω2

(
ω sin(ωt) +A3[n]

(
cos(ωt)− exp(−A3[n]t)

)))
,

v3(r, t) = Gr

(
1− exp(−A3[n]t)

A3[n]
− Pr

A3[n]Pr− r2n

(
exp

(
−r2n
Pr

t

)
− exp(−A3[n]t)

))
.

4 Nusselt Number and Skin Friction

Investigating the heat transfer rate and elucidating the connection between convective and con-
ductive heat transfer are the goals of the Nusselt number calculation. It is shown by [7],

Nu = −∂θ(r, t)

∂r

∣∣∣∣∣
r=1

. (24)

The skin friction is evaluated as the friction force or shear force applied to the surface of the cylin-
der, which is given as

τ = −
(
1 +

1

ζ

)[
∂v(r, t)

∂r

]
r=1

. (25)

5 Results and Discussion

To guarantee that the analytical solution (21) is accurate, compare the limiting case of the
acquired outcome to the prior finding by [32]. Both graphs are aligned based on the observation,
indicating that they are in accord with one another. Hence, it is agreed that the analytical solution
(21) is accurate, as shown in Figure 2.
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Figure 2: Evaluation of fluid velocity v(r, t) in (21) with ζ = Da = ∞, vs = α = 1.0, A0 = A1 = M = 0, and in equation (29) with
ω = 0 by Khan et al. [32].

By using the key factors Casson parameter ζ, Magnetic parameter M , Darcy number Da,
Grashof number Gr, Prandtl number Pr, slip velocity parameter vs, fractional parameter α, and
time parameter t, the blood flow properties of the fractional derivative model have been investi-
gated and visually displayed in Figures 3 – 8. Additionally, Tables 1 and 2 provide the Nusselt
number and skin friction. Based on the references, the parametric analysis is conducted using the
following values: vs =0 for no-slip conditions, Pr=21.0 for the Prandtl number representing blood,
t = 1.0 for the initial state, t = 10.0 for the steady-state, ζ = 0.8, Gr = M = Da = 1.0, α = 0.5 and
the significant parameter ranges are ζ = 0.4, 0.8, 1.2, Pr = 5.0, 7.2, 21 [32, 46]. Additionally, for
a comprehensive spectrum, some parameter values are approximated as follows: vs =0.2 for slip
conditions, Gr = M = Da = 1.0, 2.0, 3.0, and α = 0.2, 0.5, 1.0.

(a) t=1.0 (b) t=10.0

Figure 3: The result of the Casson parameter on the behavior of fluid velocity v(r, t) when α = 0.5, A0 = A1 = 0.05, ω = π/4,
M = Da = Gr = 1, and Pr = 21.
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Figure 3 demonstrates how the fluid velocity is influenced by conditions of slip and no-slip at
the boundary, particularly about the Casson parameter,ζ. In general, Casson fluid behaves in a
manner that replicates how human blood flows via narrow arteries [37]. During the short time
interval (t = 1.0), the slip effect induced by the Casson parameter results in an augmentation of
fluid velocity. It causes a fall in the fluid’s yield stress, which corresponds to the minimal force
needed to start fluid flow. The introduction of slip velocity has a notable influence on the onset
of fluid motion. As the Casson parameter increases, we can observe a reduction in fluid rate,
considering the combined effects of slip and no-slip conditions over a substantial period (t = 10.0).
The reason is the increase of plastic dynamic viscosity, which causes the internal friction coefficient
to rise. Thus, the shear thickening factor also rises, a force required to maintain a constant flow. It
causes fluid viscosity to increase and fluid to become thicker. Additionally, the Casson parameter
is significant in blood flow because it directly influences the velocity and viscosity, which can
impact the blood circulatory system in small arteries ranging from 130 to 1300µm in diameter.

Figure 4: The result of Magnetic parameter on fluid velocity behavior v(r, t) when α = 0.5, A0 = A1 = 0.05, ζ = 0.8, ω = π/4,
Da = Gr = 1, Pr = 21, and t = 1.

This research investigates how applied magnetic fields impact the behaviour of fluid veloc-
ity, as illustrated in Figure 4. The study is centred on understanding the occurrence of slip and
no-slip effects within the system. Current examination demonstrates that an increased magnetic
parameter decreases fluid velocity in slip and no-slip scenarios. That is because the resistance force
(Lorentz force) occurs when the appliedmagnetic field reacts with the induced current generated
from moving electrical conducting fluid (human blood). Human blood comprises 55% plasma
containing 91.5% water and 8.5% other solid components. One of the components is sodium,
which can conduct electricity [2, 24]. Moreover, the magnetic field plays a crucial role in regulat-
ing blood circulation within the human body, influencing both the flow and viscosity of blood in
the context of magnetic therapy or magnetotherapy.

The behaviour of fluid velocity with the porous medium effect in slip or no-slip conditions
is presented in Figure 5. Demonstrating the increase in fluid velocity with the rise in the Darcy
number (Da), which signifies the porous medium, is observed under both no-slip and slip condi-
tions. The observed outcome can be attributed to a higher Darcy number, resulting in increased
permeability of the porous medium. This phenomenon indicates the fluid’s enhanced capacity
to traverse through the porous medium. It can be described as blood flow in tiny capillaries with
excess fat, cholesterol plaques, and blood clots [40]. It can be deduced that increased permeability

765



W. F. W. Azmi et al. Malaysian J. Math. Sci. 18(4): 755–774(2024) 755 - 774

in porous mediums results in smoother blood flow within arteries by reducing flow resistance.

Figure 5: The result ofDarcy number onfluid velocity behavior v(r, t)whenα = 0.5,A0 = A1 = 0.05,ω = π/4, ζ = 0.8,M = Gr = 1,
Pr = 21, and t = 1.

In Figure 6, the impact of the thermal Grashof number on fluid velocity patterns is visually
depicted, considering slip and no-slip conditions at the cylinder’s wall. The graph illustrates that
fluid velocity increases with the increment of the thermal Grashof number, a phenomenon ob-
served in both slip scenarios. Since it is predominant during free convection flow, the thermal
buoyancy force rises with the Grashof number. This phenomenon can be attributed to the natu-
rally occurring variations in temperature and density within the fluid flow. An increase in fluid
temperature leads to decreased fluid density, resulting in the upward movement of heated fluid
due to the buoyancy effect. In contrast, cold fluid descends due to the influence of gravity. This
leads to an upsurge in fluid velocity. In other words, the increased buoyancy forces compared to
viscous forces accelerate blood flow, with significant implications for various physiological pro-
cesses in the human body.

Figure 6: Result Thermal Grashof number on fluid velocity behaviour v(r, t) when α = 0.5, A0 = A1 = 0.05, ζ = 0.8, ω = π/4,
M = Da = 1, Pr = 21, and t = 1.
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Conversely, Figure 7 demonstrates that an elevation in the Prandtl number (Pr) results in a
reduction in both velocity and temperature profiles. Increasing the Prandtl number results in
higher momentum diffusivity and viscosity for the fluid while its thermal diffusivity decreases.
Thus, viscous force dominates the thermal diffusivity, increasing fluid motion’s friction. Hence,
fluid velocity decreases. A higher Prandtl number will let the fluid cool down faster since the heat
diffuses rapidly. Consequently, the fluid temperature falls. In conclusion, the Prandtl number’s
effect on the thermal behaviour and heat transfer properties of blood can have implications for
blood flow dynamics and temperature distribution within the circulatory system.

(a) Fluid velocity, v(r, t) (b) Fluid temperature, θ(r, t)

Figure 7: Result Prandtl number on (a) fluid velocity, v(r, t) and (b) fluid temperature θ(r, t) when α = 0.5.

The depiction of fluid velocity and temperature in Figure 8 showcases the impact of the frac-
tional parameter, α. The figures illustrate that as the fractional parameters increase, both fluid
temperature and velocity decrease within a shorter time (t = 0.1), as depicted in Figures 8(b) and
8(c), respectively. In the meantime, during a more extended period, t = 1.0, fluid temperature
and velocity rise as fractional parameters increase. There are disparities between small and large
periods due to memory effects in fractional derivatives [43]. Besides, based on the graph trend
increment as shown in Figure 8(b), it proves that the fractional fluid model (0 < α < 1) is more
sensible compared to the classical fluid model (α = 1) as time increases.

Finally, the influence of the slip velocity can be seen in Figures 3 – 8. It is clearly shown that
fluid velocity increases, especially at the cylinder’s boundary (r = 1), by increasing the slip veloc-
ity parameter. It results from the velocity differential between the fluid particles flowing through
the solid boundary cylinder and its solid wall. Additionally, fluid velocity slightly declines as it
approaches the cylinder’s center (r = 0). This is due to the thickening of the boundary layer and
high viscous force as the central cylinder approaches. Considering slip velocity is vital in math-
ematical modeling as it closely reflects real-life applications, and the results show the differences
between slip andno-slip effects. In summary, higher slip velocity diminishes bloodflow resistance,
promoting greater volumetric flow rate and axial velocity within arteries, which is significant for
physiological blood circulation regulation.
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(a) Fluid velocity, v(r, t) varies with slip velocity (b) Fluid velocity, v(r, t) varies with time parameter

(c) Fluid temperature, θ(r, t)

Figure 8: Result fractional parameter on (a) fluid velocity, v(r, t) varies with slip velocity, (b) fluid velocity, v(r, t) varies with time param-
eter and (c) fluid temperature, θ(r, t) when Pr=21.

Table 1 provides a summary of the Nusselt number and various factors, including the Prandtl
number (Pr), time (t), and fractional parameter (α). It discovers that the Nusselt number rises
when Pr grows. Meanwhile, the Nusselt number declines when α and t increase. Similar results
of the Nusselt number are obtained by [6, 51]. Generally, viscous diffusion is dominant as the
Prandtl number increases. It enhances convective heat transport and hence the Nusselt number.
Furthermore, skin friction is shown in Table 2 for various physical factors, including the Prandtl
number Pr,magnetic parameterM , Grashof numberGr, Darcy numberDa, andCassonparameter
ζ, slip velocity vs, fractional parameter α, and time t. It shows that increment of skin friction as
t, Gr, Da, ζ, and α increase while decrementing when Pr, M , and vs growth. Larger skin friction
indicates a larger resistant force exerted between moving fluid and the surface [51].
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Table 1: Various parameters associated with the Nusselt number.

t Pr α Nu results
0.50 7.00 0.50 2.337 -
1.00 7.00 0.50 1.795 ↓
0.50 21.00 0.50 4.436 ↑
0.50 7.00 0.99 1.581 ↓

Table 2: Various parameters associated with skin friction.

t Pr M Gr Da β vs α τ results
0.50 7.00 1.00 1.00 1.00 0.80 0.50 0.50 -1.309 -
1.00 7.00 1.00 1.00 1.00 0.80 0.50 0.50 -0.976 ↑
0.50 21.00 1.00 1.00 1.00 0.80 0.50 0.50 -1.573 ↓
0.50 7.00 2.00 1.00 1.00 0.80 0.50 0.50 -1.816 ↓
0.50 7.00 1.00 2.00 1.00 0.80 0.50 0.50 -0.427 ↑
0.50 7.00 1.00 1.00 2.00 0.80 0.50 0.50 -1.021 ↑
0.50 7.00 1.00 1.00 1.00 1.20 0.50 0.50 -0.942 ↑
0.50 7.00 1.00 1.00 1.00 0.80 1.00 0.50 -3.638 ↓
0.50 7.00 1.00 1.00 1.00 0.80 0.50 0.99 -0.809 ↑

6 Conclusion

A through examination was conducted to study the properties of a Casson fluid in the context
of free convection flow around a cylindrical object. The results of this investigation have been fur-
ther expounded upon. Studying the behaviour of Casson fluidwithin a cylindrical structure is sig-
nificant in biomedical applications since it mimics the flow characteristics of human blood in small
arterial vessels. Both a magnetic field and porosity (similar to the cholesterol effect) influence the
movement of the fluid. Besides, the impact of the pulsatile pressure gradient and slip boundary
condition is also considered. These effects are crucial in designing the mathematical modeling as
close to the physical problem. Blood flow, driven by the pulsating action of the heart, is indicated
by the pulsatile pressure gradient, and the slip boundary represents the actual condition of the
artery wall. The governing equation integrates the Caputo-Fabrizio fractional derivative. It is a
non-singular kernel operator that is easier to handle for complicated problems. It is significant in
its increased realism and accuracy compared to the classical model. Combining the Laplace trans-
form and the finite Hankel transform yields the solution to the fractional dimensionless equation.
The validity of the analytical result is confirmed by doing a comparative analysis with both the
limiting case and previously published literature findings. The graphical representation displays
the velocity and temperature profiles and their respective characteristics. Based on the empirical
evidence, it may be inferred that:

• Increases of ζ lead to enhancing the fluid flow with the presence of the slip boundary when
t = 1.0; meanwhile, fluid velocity declines for the no-slip condition at t = 1.0 and both slip
and no-slip conditions at t = 10.0.

• The fluid velocity increase factors are Da, Gr, vs, and t.
• Rise in the value of M and Pr causes a decrement in the fluid velocity.
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• An elevation in the Prandtl number leads to a reduction in the temperature of the fluid.
• Higher fluid velocity and temperature over an extended period result from an increase in

the fractional parameter, and the reverse is equally valid.
• The fluid model with fractional derivatives is a more accurate representation compared to

the traditional fluid model.
• The cylinder’s wall is seen to be impacted by the slip velocity.
• Increment of the Nusselt number due to Pr and decrement of the Nusselt number due to α

and t.
• The skin friction rises due to t, Gr, Da, ζ, and α, while skin friction falls due to Pr, M , and

vs.

The present study considered that no slip temperature occurred. The study can be extended
by considering the slip temperature to be more practical. Additionally, the influence of thermal
radiation and chemical reactions can be regarded as to advance this investigation. Besides that,
other fluids that mimic blood flow in a different situation can be considered, such as Herschel-
Bulkley, Jeffrey fluid, and nanofluid.
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